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We propose a “bounded rationality” model of the emergence of Zipf’s Law in word 
frequency distributions. It assumes that Sample-Space Reduction (SSR) as defined 
by Corominas-Murtra et al. (2015/16) and Thurner et al. (2015/18; henceforth CH&T) 
can model a key phenomenon of human language production: semantic precision be-
ing compromised in favor of easier lexical access. Zipf (1936/1949) himself conjec-
tured a causal link between this “least effort” tendency and the frequency distributions 
he had observed: power-law distributions with slope parameter a » 1 (Fig. 1). However, 
no-one has since proposed a cognitively plausible theory of why “least effort” yields 
distributions close to Zipf’s Law (see review by Piantadosi 2014). 
Selection of lexical items during language production is standardly depicted as a three-
stage process: from reference delimitation via concept activation to lemma selection. 
(Lemmas correspond to citation forms of inflected wordforms.) In line with lexico-
graphic practice, we assume that many concepts (meanings) are associated with one 
or more (synonymous) lemmas, and that concepts vary w.r.t. semantic complexity: the 
number of criteria determining whether the activated concept accurately covers the 
intended reference (denotation)—neither too broad nor too narrow. If such a lemma 
proves hard to access, producers will resort to referentially “good enough” concepts 
associated with more easily accessible lemmas. Options include (1) switching to a 
concept that delimits the reference by applying another set of criteria; (2) selecting a 
superordinate concept (a simpler, less precise meaning), and/or (3) splitting the delim-
itation criteria across multiple, simpler concepts and conceptual dependency links 
(thereby often restoring semantic precision). Crucially, these scenarios cause a unidi-
rectional frequency shift: it boosts the frequencies of lemmas with relatively imprecise 
meanings, and of “function words” (many of them used to mark conceptual dependen-
cies explicitly). This contributes to a negative correlation between the referential pre-
cision and the usage frequency of content and function lemmas. 
The “good enough” (“satisficing”) word-finding strategy generates ranked lemma-fre-
quency distributions with heads densely populated by a small vocabulary of semanti-
cally imprecise but easily accessible content and function words, and with tails 
sparsely populated by a large set of more precise but harder to find lemmas. CH&T 
present mathematical proof and computer simulations of a remarkable result: SSR 
transforms large, relatively flat input power laws (0 £ a’ < 1) into output power laws 
with a » 1. This outcome obtains (“in the limit”, and in the absence of external biases) 
with input distributions spanning large (including human) vocabularies, generalizing 
beyond power laws to many types of frequency distributions with zero or negatively 
accelerated decay. In the words of CH&T: Zipf’s Law acts as an attractor (Fig. 2). 
We propose to treat concept-frequency and lemma-frequency distributions as input 
and output distributions, respectively, hypothesizing that “good enough, easy-access” 
word finding tendencies will map the former onto the latter by emulating SSR. This 
presupposes that slope exponents of ranked concept-frequency distributions do not 
exceed 1. If this can be verified, and if additionally observed details of human word-
finding turn out compatible with the assumptions underlying SSR, the proposed model 
will meet an important criterion put forward in Piantadosi’s (2014) review: that any 
explanation of Zipf’s Law should be founded on a plausible view of lexical processing. 
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Fig. 1. “Zipf’s Law” emerging from a uniform “input” distribution. LEFT: A “power law” is a ranked distri-
bution of item probabilities in which the probabilities of rank i are proportional to those of a harmonic 
series: p(ri) = 1/i for i = 1, …, N); e.g., the curve labeled “output”. The slope of power-law curves can be 
adjusted by raising the denominators to a power a; p(ri) = 1/ria. For a > 1, decay is steeper, for a < 1 it 
is flatter than that of a power law with a = 1, i.e., the slope of “Zipf’s Law” proper. RIGHT: This stairway 
(drawing slightly adapted from CH&T) illustrates the notion of Sample-Space Reduction. Imagine a ball 
is bouncing down the steps, never rebounding to a higher step (unidirectionality), hitting (“visiting”, 
“sampling”) the same step at most once, and halting at the lowest step. At the onset of each jump, the 
ball has a number of contiguous steps to chose from: the current “sample space”. The probability of the 
ball visiting ri during a jump equals 1 divided by the current sample space. This yields a harmonic series 
if the steps have equal widths, hence equal probabilities of being sampled. We refer to a distribution of 
step widths as “input distribution”. In the left chart, the input distribution is uniform (which, analyzed as 
power law means α’ = 0, with low R2). However, the steps may have wider and narrower widths, causing 
them to be visited with proportionately higher or lower probabilities (discussed in Fig. 2). 

 
Fig. 2. Effects of applying SSR to input distributions decaying with varying slopes (α’). LEFT: SSR 
applied to input distributions with slope 0 £ α’ £ 2, spanning N = 50,000 steps. This N value reflects 
common estimates of the active lemma vocabularies of adult natural-language users. The width 
distributions of the steps are power laws with either a flat input distribution (α’ = 0), a slow decay rate 
(0 < α’ £ 1), or a rapid decay rate (α’ > 1). SSR tends to cause accumulation of probability mass at the 
head of the output distribution, thereby attenuating the probability mass occupied by the tail. With large 
and slowly decaying input distributions, the emerging output slope values remain within a very narrow 
bandwidth around α » 1: “Zipf’s Law as an attractor.” RIGHT: These nearly invariant output slope values 
can be understood intuitively as additive contributions of α’ and SSR to the slope of output distributions. 
The chart represents the situation expected when N is approaching infinity. Open and filled circles: 
contribution by α’; open squares: contribution by SSR; filled circles: slope values of the emerging output 
distributions. For instance, at α’ = 0 (uniform, horizontal input distribution), SSR is responsible for the 
entire output slope (α = 1), yielding a harmonic series. For larger values of α’, the SSR contributions 
decrease: a higher α’ implies a thinner tail, hence lower probabilities of downward jumps from high-rank 
steps belonging to the tail. SSR runs dry at α’ = 1, meaning α = α’ for α’ ³ 1. For the proof see CH&T. 
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