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This study explores the predictive potential of linguistic distances and surprisal in multi-
lingual intercomprehension experiments. Linguistic distances refer to the measurable
differences between languages (Wichmann et al., 2010). They can be quantified in
various domains, such as phonology and orthography (Gooskens and van Bezooijen,
2013), with each domain contributing differently to the overall distance between lan-
guages. Previous research showed that higher linguistic distances were associated
with decreased intercomprehension (Gooskens and Swarte, 2017; Möller and Zee-
vaert, 2015; Vanhove and Berthele, 2015).

The difficulty in processing a linguistic unit is proportional to the metric of surprisal, as
estimated by language models (Hale, 2001; Levy, 2008). Surprisal is defined as the
negative log-likelihood of encountering a unit given its preceding context derived from
language models (surprisal = − logP (wi | context) for a given unit wi in a sequence),
and it effectively measures the unpredictability of that unit (Crocker et al., 2016).

Given the above background, we conducted two web-based experiments to examine
the intercomprehension of microsyntactic units (specific constructions between the lex-
icon and the grammar, idiomatic properties of which are closely tied to syntax, see Av-
gustinova and Iomdin, 2019) in context under different input conditions: (1) spoken and
(2) written. Each experiment included two tasks: free translation and multiple choice.
Native Russian speakers participated in the experiments covering five closely related
Slavic languages (Belarusian, Bulgarian, Czech, Polish, and Ukrainian). We examined
the participants’ intercomprehension performance through accuracy. We calculated
Pearson correlations of the accuracy values with phonologically weighted Levenshtein
distance (PWLD), orthography-based Jaccard similarity, and surprisal estimates from
Automatic Speech Recognition models, namely Wav2Vec2-Large-Ru-Golos-With-LM
(Bondarenko, 2022) and Whisper Medium Russian and language models, namely
ruBERTa-large and ruGPT3large (Zmitrovich et al., 2023).

Figure 1 shows the accuracy results for both experiments. In general, we found that
spoken input led to higher accuracy values in both tasks except those in the multiple
choice task for Ukrainian and Bulgarian, suggesting that the written modality might
introduce a confounding factor. As surprisal from ruBERTa-large and PWLD showed
stronger correlations in both tasks, we only present those factors in relation to the free
translation and the multiple choice tasks, as shown in Table 1. We observed significant
correlation of free translation accuracy for all languages together and for Ukrainian in-
dividually. As for multiple choice accuracy, significant correlations with PWLD were
observed when pooling all languages together, as well as for all languages individually
except Belarusian. We also observed stronger correlations in the experiment with writ-
ten input, especially for the multiple choice task. Overall, this study underscores the
predictive potential of surprisal and linguistic distances in multilingual intercomprehen-
sion experiments, providing valuable insights for the field of computational linguistics.
Future research should expand to diverse language groups to validate these findings
and explore their broader applicability.
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Figure 1: Experimental results for both tasks.

Free Trans with ruBERTa-large surprisal Multiple Choice with PWLD

Language Written Spoken Written Spoken

Belarusian -0.06 -0.03 (NS) -0.2 (NS) -0.15 (NS)
Bulgarian -0.17 (NS) 0.00 (NS) -0.42** -0.33*
Czech -0.23 (NS) -0.06 (NS) -0.28* -0.25 (NS)
Polish -0.21 (NS) -0.16 (NS) -0.38** -0.45***
Ukrainian -0.25* -0.06 (NS) -0.50*** -0.43***
All -0.38*** -0.38*** -0.42*** -0.39***

Note: * = p < .05, ** = p < .01, *** = p < .001, NS = Non-significant

Table 1: Pearson correlation of predictors with accuracy of participants’ responses
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